GeoTech™ Fixed Cutter PDC Bits

Using DatCI™ process and IBitS™ design software, Halliburton develops revolutionary fixed cutter PDC bits that increase ROP and drilling intervals, decrease costs.

Halliburton’s new GeoTech™ series of fixed cutter PDC bits blends design theory with practical application-specific knowledge to produce custom-engineered matrix and steel body bits for optimal efficiency and performance—delivering you a truly optimized bit design.

Using the Design at the Customer Interface (DatCI™) process, GeoTech bits help improve rates of penetration and enable longer drilling intervals—all while lowering the cost per foot. Our patented and proprietary IBitS™ design software enables us to create 3D bit designs anywhere by using the latest dynamics modeling, including upgrades that better simulate cutting structures.

Features and Benefits

Each GeoTech bit incorporates specific application experience with expert design science, including:

- Our rock-interaction analysis tool helps predict load and motion of a drill bit for multiple scenarios including rock chipping, bent motor, whirl, and more.
- Depth of cut control optimally positions cutting-structure elements to smooth torque fluctuations, while a two-step cutter layout position improves performance when primary cutters wear or when drilling parameters change.
- GeoTech PDC-cutter technology significantly helps increase the amount of rock removed with less wear for higher average ROP and up to four times the footage of previous products.
- Improved hydraulics simulation leads to optimum hydraulic design, directing flow with little recirculation and eliminating stagnant zones to optimize bit cleaning and minimize erosion.
- Advanced materials include new matrix/binder materials, which increase durability and erosion resistance, enabling innovative steel-blade geometries and aggressive matrix body design.

DatCI service platform: The most effective bit optimization solution

Combining powerful design and simulation tools, and a global network of technical resources, the DatCI service platform uses direct customer input to rapidly optimize each GeoTech bit. Our global network of application design and evaluation (ADE) service specialists works directly with the customer to define specific bit solutions, drawing from a toolbox of the industry’s most sophisticated software systems for comprehensive planning, modeling, and engineering—with real-time performance optimization capabilities. That toolbox includes:

- IBitS™ patented and proprietary system for creating 3D bit designs anywhere, using the latest bit dynamics modeling, including upgrades that better simulate cutting structures for specific applications
- Enhanced hydraulics modeling that provides a more accurate bottom-hole pattern and enables quantitative analysis on cutter faces and through junk slots to minimize erosion.
- SPARTA™ drilling optimization software with an advanced rock mechanics module to analyze formation properties and precisely define the drilling application
- DrillingXpert™ simulation model that enables application and evaluation service specialists to quantify the impact of changes, recommend the best drill bit for the application, and optimize bottom-hole assembly parameters to minimize vibration and enhance performance.

At the heart of the Design at the Customer Interface (DatCI) process, the IBits™ software uses a new rock-interaction model to more accurately predict the effects of design changes on efficiency and longevity.

FAMILY | CLASS

GeoTech™ Drill Bits

APPLICATION PLATFORM (OPTIONAL)

- **D** = Directional (all other directional systems)
- **G** = Geo-Pilot® Rotary Steerable
- **E** = Geo-Pilot® EDL Rotary Steerable
- **T** = Turbine High Rotational Speed

BLADE COUNT

The blade count indicates the number of blades on the bit.
- **3** = Three Blades
- **4** = Four Blades
- **5** = Five Blades
- **6** = Six Blades
- **7** = Seven Blades
- **8** = Eight Blades
- **9** = Nine Blades

CUTTER SIZE

The cutter size digit describes the size of the PDC cutters on the bit. On bits with multiple cutter sizes, the predominant size is indicated.
- **2** = 8 mm (3/8 in.)
- **3** = 10.5 mm (13/32 in.)
- **4** = 13 mm (1/2 in.)
- **5** = 16 mm (5/8 in.)
- **6** = 19 mm (3/4 in.)
- **8** = 25 mm (1 in.)

ADDITIONAL CUTTER OPTIONS

H = Highly abrasive wear

OPTIONAL FEATURES

- **b** = Back Rewing
- **c** = Carbide Reinforcement
- **e** = SE - Highly Spiraled
- **f** = Full PDC Gauge Trimmers
- **k** = Kerfing - Scribe Cutters
- **p** = PDC Gauge Reinforcement
- **u** = Updrill

© 2015 Halliburton. All rights reserved. Sales of Halliburton products and services will be in accord solely with the terms and conditions contained in the contract between Halliburton and the customer that is applicable to the sale.