Reducing Rathole Length While Saving Rig Time

In a traditional reaming-while-drilling BHA the reamer is placed above the RSS and LWD tools, creating a long rathole and requiring an extra trip to enlarge the hole to TD. Challenged to design a tool to increase efficiency, Halliburton has responded with a solution that has the added benefits of optimized steerability and fluid flow, and reduced tool length based on the proven reliability of the NBR® reamer technology. Run in conjunction with a traditional reamer, TDReam™ tool is Halliburton’s newest downhole innovation designed to significantly reduce rathole length and reach TD in one run.

No locking devices to prevent pistons from inadvertently locking in the open position. Return springs close arms when flow decreases.

Solid one piece body
Standard API, stress relieved connection.

Shear Pin prevents tool activation while drilling out shoe track.

Tool Length approximately 3.1 ft (950mm)

Tool Length with Bit approximately 4.3 ft (1307mm)

Balanced concentric tool substantially reduces BHA vibration compared with eccentric tools or bi-center bits, improving steerability and stability.

Traditional rathole
60-120 feet

TDReam rathole
<3 feet
Proper selection of cutting structure and tool sizes can save valuable rig time and reduce trips. Consult your Halliburton representative, who will work with an Application Design Evaluation (ADE℠) service specialist to consider a variety of application specific factors such as; formation, cutter layout, density and size, and hydraulic and gauge configuration.

SelectCutter™ PDC Technology
Halliburton offers a premium cutter option for TDReam tool featuring advanced cutter technology with three primary drivers of cutter performance:

- **Abrasion Resistance** helps ensure that cutters maintain a sharp edge by keeping the diamond loss low.
- **Impact Resistance** keeps the cutter from failing due to dynamic forces and vibrations under normal drilling conditions.
- **Thermal Mechanical Integrity™** works to remove heat generated from friction to ensure that the diamond to diamond bonds do not break down.