Table of Contents

4 Editor’s Notes
Janet Emr, Marathon Oil Company

Introduction

5 The Propellant Technology Development Group and the licensees

7 Introduction to the StimGun family of products

8 Tools, components and industry usage
Brent Kirschner, Owen Oil Tools

12 Safety and regulatory compliance
David Boston, Owen Compliance Services, Inc.
Joe Haney, HTH Technical Services, Inc.

Background

15 Historical and technical perspectives
Joe Haney, HTH Technical Services, Inc.
John Schatz, John F. Schatz Research & Consulting, Inc.

20 Demonstration of pressure wave motion in the well caused by a dynamic event
John Schatz, John F. Schatz Research & Consulting, Inc.

24 Effective penetration is enhanced by the StimGun™ assembly
Dan Pratt, Owen Oil Tools

25 Propellants can break through formation damage created by perforating
James Barker, Jet Research Center, a division of Halliburton Energy Services
John Hardesty, Jet Research Center, a division of Halliburton Energy Services
Phil Snider, Marathon Oil Company

29 A nodal analysis of why near-wellbore fracturing with propellant increases productivity
John Gilbert, Marathon Oil Company
Craig Beveridge, Owen Oil Tools

Products & Applications Overview

33 Product testing to develop and confirm tool performance
Joe Haney, HTH Technical Services, Inc.
Bob Daly, Marathon Oil Company
Candidate well selection for the StimGun™ assembly technology
Bob Haney, HTH Technical Services, Inc.

When StimGun products may be the wrong choice
Joe Haney, HTH Technical Services, Inc.

Choosing the right tool and conveyance method
Phil Snider, Marathon Oil Company

Pre-job planning
David Cuthill, Computalog Wireline Services
Bob Haney, HTH Technical Services, Inc.

PulsFrac™ software: How does it work? What does it do?
John Schatz, John F. Schatz Research & Consulting, Inc.

IES high-speed/high-shock downhole memory gauge
Scott Ager, Instrumentation & Engineering Services, Inc.

PulsFrac™ software and IES high-speed memory gauges used to design
and confirm propellant behavior, perforation breakdown,
and formation fracturing
John Schatz, John F. Schatz Research & Consulting, Inc.
Bob Haney, HTH Technical Services, Inc.
Scott Ager, Instrumentation & Engineering Services, Inc.

Big-block surface test of the StimGun™ assembly
Brent Kirschner, Owen Oil Tools
John Schatz, John F. Schatz Research & Consulting, Inc.

Using the IES high-speed gauge in TCP drop bar applications
Casey Weldon, Baker Atlas
Alphie Wright, Baker Atlas

Application Type: Perforation Breakdown

An interview with Buddy Woodroof, ProTechnics Technical Manager
Paul Gardner, Marathon Oil Company

Does propellant help or hurt hydraulic fracturing?
E. Glynn Williams, Marathon Oil Company

An overview of SPE paper 63104: New techniques for hydraulic fracturing in
the Hassi Messaoud Field
Kent Folse, Halliburton Energy Services

Improving hydraulic fracturing effectiveness by wireline StimGun™ assembly
perforating in the San Andres Formation of West Texas
Kevin Miller, Marathon Oil Company

Underbalanced TCP StimGun™ assembly applications to obtain
initial production and improve hydraulic fracturing
Jim Gilliat, Canadian Completion Services – The Expro Group
An overview of SPE paper 71639: Field performance of propellant/perforation technologies to enhance placement of proppant on high-risk sand-control completions
Kent Folse, Halliburton Energy Services

Propellant assisted perforation breakdown examples
David Cuthill, Computalog Wireline Services

Restoring injectivity
Bob Haney, HTH Technical Services, Inc.

Application Type: Near-Wellbore Stimulation

The first applications of TCP underbalanced propellant jobs in shallow Rocky Mountain gas wells
Ralph Affinito, Marathon Oil Company
Larry Staten, Halliburton Energy Services

High-speed gauge data improves job success on wireline-conveyed near-wellbore stimulations
Todd McAleese, Marathon Canada, Ltd.

Combining StimGun™ assembly with EOB perforation and acid stimulation significantly improves New York state’s gas production
Craig Smith, The Expro Group (formerly with Halliburton Energy Services)

An overview of SPE paper 68101: A unique approach to enhancing production from depleted, highly laminated sand reservoirs using a combined propellant/perforating technique
Kim Hungerford, Halliburton Energy Services

Successfully combining the StimGun™ assembly with Pow*rPerf™ technologies
Frank Oriold, Canadian Completion Services – The Expro Group

Slickline-conveyed StimTube™ tool stimulation: an alternative to a high-rate acid fracture
Bill Barton, Tripoint, Inc. – The Expro Group

Propellants have dramatically increased production from heavy oil wells: the need for hydraulic fracturing has been reduced
Kevin Newmiller, Precision Drilling
Perry Huber, Plains Perforating Ltd.

Enhancing sand/oil production in the Lloydminster Canada area
David Cuthill, Computalog Wireline Services
Lane Merta, Computalog Wireline Services

Stimulation of shallow gas wells
David Cuthill, Computalog Wireline Services
Application Type: Open Hole Stimulations

111 Open hole completions: case histories and technical studies with formation micro imaging (FMI)
 Brant Kirschner, Owen Oil Tools

General Interest and What’s Next

117 Myths and misconceptions
 John Schatz, John F. Schatz Research & Consulting, Inc.

122 Benefits of using high-speed gauge data to obtain rock properties
 John Gilbert, Marathon Oil Company
 John Schatz, John F. Schatz Research & Consulting, Inc.
 David Cuthill, Computalog Wireline Services
 Bob Haney, HTH Technical Services, Inc.

124 New product and technology development
 John Schatz, John F. Schatz Research & Consulting, Inc.
 Joe Haney, HTH Technical Services, Inc.

Appendix

127 Glossary
133 Reference list
137 Contributing author's biographies
149 Selected SPE papers

Editor’s Notes

Editing the StimGun Technology book was a daunting task, but I am grateful for the opportunity to work with such experienced and highly knowledgeable individuals. I feel privileged to be a part of the Propellant Technology Development Group and for having the opportunity to gain knowledge from it. I would like to express my gratitude to Cindy Guire for her patience and perseverance working countless hours with me on the layout and graphic work.

Although they do not appear here as contributors, the Propellant Group wishes to recognize several individuals' contribution during the early development stage of the technology. Some of these individuals have moved to other companies or occupations, but we continue to consider them valued friends and partners.

- David Wesson, formerly of Owen Oil Tools, had the energy and ideas that became infectious, making the project fun.

- David Carlson and J.C. Picard, formerly with Computalog Wireline Services, spent countless hours driving between Edmonton, Canada and Cody, Wyoming to perform the first evaluations of the technology. They believed in the technology and did a great job of executing early field work.

- Doug Robinson and Mike Boyle, as early strong supporters of propellant technology with vision.

- Craig Dickerson continues to be key member of the group and also deserves recognition. Craig's practicality combined with his enthusiasm enables continued manufacturing process improvement and quality control.

The reader should find this book a valuable resource for understanding and applying StimGun propellant* technology. Please contact the Propellant Technology Development Group if clarification or further information is needed. Contact information for the members of the Propellant Technology Development Group is included in the Appendix along with the Contributing Authors’ Biographies.

* The StimGun family of products are DOT classified a oxidizers (5.1) and not as propellants. For classification purposes, propellants are equivalent of explosives. Therefore throughout this publication, when the term “propellant” is used with regard to StimGun products, it should technically be interpreted in DOT terms to mean “oxidizer, mixture, solid.”