ASTANA, SEPTEMBER 16th 2016

Kazakhstan’s Largest Dedicated Drilling Technology Event, in Association with General Event Partner and Platinum Sponsor JSC NC KazMunayGas

Roundtable Style Format Focusing on Key Drilling Challenges, Including:
- Complex reservoirs
- HP/HT wells
- Drilling through low pressure zones
- Mud loss
- Wellbore stability
- Limited internal infrastructure
- Lack of sea route to get drilling equipment in country
- Harsh winter environment & need for winterized rigs
- Rig safety and HSE

“Tomorrow’s Drilling, Delivered Today”

www.kazdr.kz
1. In which regions of Russia are lost circulation issues consistently found?

Halliburton: In the current economic conditions, many oil companies focus on the development of mature fields. As a rule, such fields have well-developed infrastructure, and their investments have long ago paid off. However, the other side of the coin is that construction of new wells becomes more sophisticated. Low reservoir pressures, high water cut, more frequent fracs, considerable fluid production rates - all of these present extremely high risks for well drilling. One of the major well construction risks is lost circulation.

Lost circulation entails considerable costs and creates serious problems while drilling worldwide, and in the future this kind of a trouble would only escalate. In Russia, lost circulation is a well known issue for the Volga-Urals area (areas along Volga River, Orenburg area, Bashkortostan). In the areas of Eastern Siberia, Republic of Komi and North West Siberia this issue is less severe.
The key reasons for this issue lies in lithology and anthropological factors. Lithology and lithogenesis factors are the following: loose rocks (highly permeable sands, gravel, shelly rocks and reeval deposits), natural fractures (interlayers of sandstones and shale rocks, intervals under tectonic strain), caverns (cavities, pockets and faults). Anthropological factors include: depleted zones (low-pressure sandstones), induced fractures (mechanical impact in the process of well drilling or completion).

National Oilwell Varco: Lost circulation issues are mainly found in the Volgo-Ural (Orenburg area, Bashkortostan) as well as Western Siberia. We observe an increased demand in the loss circulation solutions in Komi Republic and Eastern Siberia too.

Weatherford: Lost circulation is one of the most common issues in drilling which significantly complicates the process. Fractured, cavernous rocks and highly permeable rocks may potentially be lost circulation zones; therefore this presents a pressing problem for most petroleum provinces in Russia – from the Caspian region to the Timan-Pechora province, from the Volga Region to Sakhalin.

Lost circulation may be caused by process reasons or geological structure of rocks. It is commonly known that geological and lithological properties of rocks in various regions of our country may differ greatly, as well as the drilling technologies used; accordingly, the nature and reasons for lost circulation in various regions would be different. Well drilling in fractured and cavernous carbonate rocks, e.g. in the Urals, the Volga region or East Siberia is most challenging. In the southern regions of Russia lost circulation is often linked to reservoir permeability and drainage areas, especially if heavier muds are used.

Targin Drilling: In Central Russia. This includes Orenburg, Samara regions, Republic of Bashkortostan and Republic of Tatarstan. The causes of lost circulation are: late stage of field development, high-permeability formations, cavernous formations, fractures (Serpukhovian Stage, Myachkovskian Stage).

Other regions are YNAO and KhMAO in Western Siberia. The causes are the same; late stage of field development, high permeability, ALRP (Senoman Stage).

2. What are the most common problems relating to lost circulation?

Halliburton: Considering the a.m. reasons, the lost circulation problem is the key problem worldwide, and it

www.rogtecmagazine.com
is associated with a lot of evident and hidden risks for the customer.

One lost circulation impact is the loss of drilling fluid, which is often costly by itself. It costs us increased rig time and additional materials to replenish the lost volumes. We should not forget about the effects of lost circulation which seem insignificant at a glance. First of all, there are risks of additional chemical handling for people, and the environmental hazard of blowouts in case of a drastic drop of the drilling fluid in the well. In the worst cases, the above factors may lead to loss of the well, loss of life, drastic environmental damage and huge financial costs of response operations. Halliburton focuses on evaluating and predicting such risks even at the drilling planning stage. Primarily, we evaluate the risks to human life and health and risks of environmental impact. At this stage, the key driver is the expertise of our engineers, innovative specialist

Циркуляционный переводник многоразового действия (MOCS) от NOV
The multiple opening circulation sub (MOCS tool) from NOV

<table>
<thead>
<tr>
<th>Неактивированный режим Без сбрасываемого шара</th>
<th>Режим перепуска После сбрасывания шара</th>
<th>Возврата в исходное положение Отключение насосов</th>
<th>Режим без перепуска Non-Bypass Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unactivated Mode</td>
<td>Bypass Mode</td>
<td>Reset Mode</td>
<td>Pumps Off</td>
</tr>
<tr>
<td>No Drop Ball</td>
<td>After Ball Drop</td>
<td>Pumps Off</td>
<td></td>
</tr>
</tbody>
</table>

Инструмент спускают в открытый ствол скважины. Run in hole position with open through bore.

После посадки шара и увеличения расхода индексный механизм движется вниз, открывая отверстия в затруб. Шар перекрывает поток жидкости в инструмент.

После отключения насосов индексный механизм возвращается в нейтральное положение. With pumps off, the tool returns to reset position. Even with the ball on seat, the MOCS is designed to allow the drill stem to drain while tripping pipe.

После перехода в небайпасный режим, когда шар находится в седле, инструмент направляет поток обратно к долоту, возобновляя циркуляцию через весь КНБК.

Once in non–bypass mode with the ball on the seat, the tool routes flow back to the bit to continue circulation through the entire BHA.
Лучшее Решение — Избежать Проблем Еще До Их Появления

ТАМ, ГДЕ ДРУГИЕ ВИДЯТ ПРЕПЯТСТВИЯ, BAROID ВИДИТ ВОЗМОЖНОСТИ

В 1957 году вирусологи научились предотвращать одну из самых страшных болезней в мире — полиомиелит. Также и мы в подразделении Baroid не просто «лечим» проблемы, мы их предотвращаем. Взять, к примеру, потерю циркуляции. Такая ситуация может возникнуть в силу самых разных причин. Поэтому мы разработали целый комплекс решений, чтобы предотвратить потери циркуляции еще до их начала или же, если потери уже имеют место, устранить их даже в самых сложных условиях. Не теряйте время и средства на проблемы потери циркуляции. Положитесь на нас — мы поможем найти решение в точном соответствии с вашими требованиями и задачами.

Вместе мы сможем расширить границы возможного.

halliburton.com/baroid/challenge и halliburton.ru
2. Какие наиболее распространенные проблемы связаны с поглощением бурового раствора?

Halliburton: По причинам, о которых упоминалось ранее, проблематика поглощений является основной по всему миру и несёт в себе большое количество как явных, так и скрытых рисков для Заказчика.

К явным последствиям поглощений можно отнести саму потерю бурового раствора, который зачастую является очень дорогостоящим. В свою очередь это приводит к затратам времени и материалов для восстановления потерянных объёмов. Следует помнить и о тех последствиях поглощений, которые на первый взгляд незначительны. Это в первую очередь риск дополнительной работы с хим. реагентами для людей, а так же опасность для экологии из-за вероятности получить НГВП при катастрофическом снижении уровня промывочной жидкости в скважине. В отдельных случаях, все вышеперечисленные факторы приводят к потере скважины, гибели людей, значительному экологическому ущербу и огромным финансовым затратам на ликвидацию последствий. Компания Halliburton уделает особое внимание оценке и прогнозированию таких рисков ещё на стадии планирования бурения. В первую очередь проводится оценка рисков для жизни и здоровья людей, рисков воздействия на окружающую среду. На данной стадии главным фактором успеха является опыт и профессионализм инженерного состава, современный специализированный софт (к примеру, Halliburton предлагает :DFG®, WellSET®, WellSight EXPRESS®, CFG®, DFG RT®, WSAAnalyzer®), современные материалы и составы для ликвидации поглощений. Немаловажным вкладом в успешную работу является мировой опыт применения наших технологий с большой базой данных, доступ к которой имеет каждый инженер компании вовлечённый в процесс планирования и строительства скважины.

National Oilwell Varco: Частичное или полное поглощение раствора приведет к увеличению сроков строительства скважин, в частности, в связи с временем, затрачиваемым на борьбу с ним. Среди наиболее распространенных проблем стоит упомянуть проявления, дифференциальный и механический прихват, а также потери КНБК в скважине.

Weatherford: Поглощение бурового раствора, сопровождающееся снижением гидростатического давления на стенки скважины, создает благоприятные условия для последующих газо-, нефте- и водопроявлений, ведет к обвалообразованию, или осьпи стенки, что нарушает общую целостность ствола скважины. Поглощение может привести к значительным финансовым затратам на ликвидацию поглощений, а также значительному экологическому ущербу.

Targin Drilling: Условия для последующих газо-, нефте- и водопроявлений, ведущих к обвалообразованию или осьпи стенки скважины, создают благоприятные условия для последующих газо-, нефте- и водопроявлений, ведущих к обвалообразованию или осьпи стенки скважины.

3. How can the well design plan help mitigate and prevent lost circulation?

Halliburton: The design stage is one of the most important early stages of well construction. Any well can and should be designed to meet the risks which may lead to troublesome situations. Close cooperation with the customer, experience, technologies - everything contributes to mitigation of lost circulation risks. Interval inclinometry, type of drilling fluid and mud rheology are all known to greatly contribute to lost circulation. The following scenario can be seen as an example: The customer provides data...
as to differential and mechanical sticking, as well as losses, breakdowns, and significant costs of time and means to overcome such situations. Moreover, in the event of losses, there may be an impairment of the initial formation properties and, as a result, significantly decrease the production.

ООО «Таргин Бурение»:

- Loss of stability of the wellbore (reduction of hydrostatic pressure on the wellbore wall, erosion).
- НПВП (reduction of hydrostatic pressure on the formation, manifestation). The pressure in the upper interval of the wellbore is reduced upon closing the wellhead, which frequently leads to collapse in the most weak spots, causing both losses and loss of control over the well. The probability and degree of sticking decreases under conditions of preliminary studies, proper well design and execution of all operations.
- Differential sticking due to the difference between the pressure of the column of fluid and formation pressure.
- Increase of material and temporary costs for well construction (additional SPB, cement slurry).
- Narrowing of the wellbore, due to thickening of the filtration layer in the loss zones and filtration.
- Poor quality of well cementation.

3. Как проект на строительство скважины может снизить риск и предупредить поглощение бурового раствора?

Halliburton: Стадия проектирования одна из самых ответственных при начале строительства скважин. Здесь можно и нужно учсть все те риски, из-за которых возможно развитие нежелательных ситуаций. Тесное взаимодействие с Заказчиком, опыт, технологии - всё направлено на снижение рисков поглощений. Известно, что инклинометрия интервала, тип и реология бурового раствора оказывают существенное влияние на риски развития поглощения бурового раствора. В пример можно привести следующий сценарий: Заказчиком предоставляются данные по будущей скважине и оборудованию, которое будет использоваться при строительстве. Наши специалисты моделируют гидравлические условия бурения в скважине. При определённых условиях (например, малый диаметр скважины и большой диаметр используемых on the future well and equipment to be employed in drilling. Our experts simulate the hydraulic drilling conditions in the well. At certain conditions (e.g. small borehole diameter and large diameter of used drill pipes), the drilling fluid pressure in the well will cause hydraulic fractures in the poor formation, leading to lost circulation. In this situation, we recommend using the lesser diameter pipes (where possible), or using special drilling fluid additives, considerably mitigating the lost circulation risks. Our background proves the high level of correlation between theory and practice in this context.

National Oilwell Varco: A proper mud program may limit the effect on the wellbore. Proper drilling practices (proper hole cleaning, controlled ROP, monitoring ECD; controlled rate of tripping; setting casing to protect upper weaker formation within a transition zone; monitoring pore pressure while drilling) may help prevent lost circulation. Other measures may include multistage cementing, light cementing, LCM additives to the mud and cement slurry; lost circulation zone isolation (expandable casing).

Weatherford: Pre-drilling modeling and risk analysis have now become an important phase of well construction, as they help minimize expenditure and reduce NPT. To prevent possible extra costs, well objectives and challenges should be explored already in the design stage of well construction. Then an optimized well plan should be engineered with the most suitable well-construction technology chosen, based not only on the project budget but on well and field data, etc. Such a balanced approach allows to minimize risk, deliver cost assurance and ultimately exploit ever more challenging reservoirs.

Targin Drilling:

- Isolation of zones with incompatible drilling conditions.
- Optimum drilling practice, optimization of the hydraulic program to achieve proper cleaning and reduce ECD, especially in sensitive zones.
- Optimum mud composition depending on geological conditions.
- Close analysis of problems encountered in earlier drilled wells allows incorporating preventive measures in the design phase.

4. What are the key considerations when drilling through known vugular or highly fractured formations?

Halliburton: Unfortunately, there is no unique antidote to mitigate or prevent lost circulation while drilling through vugular or highly fractured formations. However, the means of minimizing the severity of the issue in such formations is well known - proper planning which includes best drilling practices, practices to prevent or combat losses, sufficient stock of contingency LCM of the right type in the right amount, optimized fluid rheology, pump rates etc.
National Oilwell Varco: Правильное подготовленная программа буровых растворов позволит снизить риск потери циркуляции и сохранить устойчивость стенок скважины. Специально разработанная процедура проводки скважины: промывка ствола, контролируемая механическая скорость проходки, контроль плотности циркулирующего бурового раствора, регулируемая скорость спускоподъемных операций, спуск обсадных труб для защиты верхнего слабосцементированного пласта в пределах переходной зоны, контроль внутрипорового давления в ходе бурения, что способствует предотвращению поглощения бурового раствора. К другим мерам относятся многоступенчатое цементирование, цементирование легким цементом, введение в буровой и цементный раствор тампонажных смесей, изолирование зоны поглощения бурового раствора (с расширением обсадной колонны).

Везерфорд: При реализации проектов на данный момент растет значение предбукрового моделирования и анализа рисков, поскольку они позволяют минимизировать затраты и сократить НПВ. Для предотвращения возможных лишних расходов стоит еще на этапе проектирования процесса строительства скважины изучить и оценить задачи и проблемы, после чего разработать план строительства оптимизированной скважины (технологии при этом стоит отбирать не только исходя из бюджета проекта, но и учитывая полученные данные по скважине, месторождению и пр.). Подобный сбалансированный подход позволит снизить риски в процессе разработки, повысить общую экономическую эффективность проекта и поможет разрабатывать даже очень сложные месторождения.

ООО «Таргин Бурение»:
- Разобщение пластов с несовместимыми условиями бурения.
- Выбор оптимального режима бурения, оптимизация гидравлической программы для обеспечения хорошей очистки и снижения ЭПЦ, особенно в чувствительных зонах.
- Оптимальный подбор рецептуры бурового раствора, исходя из геологических условий.

Halliburton uses the software which has repeatedly proven its efficiency in this respect. In particular, the WellSET® module of DFG® software enables predicting the type and geometry of fractures (provided sufficient geological data are received from the Customer) and selecting the most efficient combination of sealants and drilling fluid additives out of those available in the given area of operations. DFG® allows us to select the most optimal drilling fluid system for given conditions. For example, it is possible to use the foam-based system QUIK-FOAM®.

National Oilwell Varco:
- Using LCM additives to mud before the L/C interval entering.
- Tripping speed control for swab/surge effect reduction.
- Logging while drilling of the pore pressure/ECD.
- Adequate hole cleaning.
- Monitoring mud weight as per program.

Weatherford: Profitability of well construction is ensured by such factors as increased rate of penetration, elimination of lost circulation and sticking, reduction of time for wiper trips and circulation, etc. However, one of the key objectives of efficient drilling is to expose the producing formation and ensure high permeability in the wellbore area even while developing assets in cavernous and fractured formations, which can become catastrophic mud loss zones. A well founded and cost effective lost circulation control method should be best selected based on geomechanical modeling. Its application in drilling allows analyzing the planned well profile for the feasibility of drilling and giving recommendations for drilling optimization and well design adjustments with account for...
anomalous zones (high/low pressure zones) and estimated safe drilling window.

Targin Drilling:
1) Mud type and weight. Increased mud weight during loss of circulation shows that the latter is caused by hydrostatic pressure increases. Such lost circulation may go away by itself (filtration). Otherwise, when loss of circulation goes through induced cracks, the remedial measures should consider the lost circulation intensity.

2) Drilling practice (monitoring circulating mud rate, smooth startup). Quick startup or shutdown of pumps may also cause pressure drops. The too quick startup of pumps induces pressure that may lead to loss of circulation, particularly during measures aiming to break circulation in annular space following the tool run. Swabbing creates pressure that breaks down the mud structure. Moving the pipe while breaking circulation facilitates gel break-down and significantly reduces impulse pressure. On the other hand, swabbing creates pressure that accelerates mud circulation and allows reaching normal circulation rate. The impulse pressure may be reduced by maintaining the gel structure on low level and gradually increasing the pumping rate. Another way to reduce such pressure is to run the tool with resuming the circulation by intervals.

3) Penetration rate (limiting the rate to improve colmatage in zones). Changes in the drilling rate may indicate changes in the reservoir and therefore affect formation integrity.

4) BHA (utilizing rotary BHA to reduce ECD and in treatments by LCM, reduce whipping). The BHA neutral point should be maintained by using the required number of HWDP.

5. When deciding how to mitigate an unpredicted lost circulation zone during drilling operations, what are the correct decisions and actions to remedy the situation as quickly and as cost effectively as possible?

Halliburton: There is no room for guessing while drilling the interval or when this scenario has already taken place. A proper decision tree for each particular scenario must be in place before the well is spudded. It is also critical to provide the drilling site with diverse (multimodal) materials with different functions. Halliburton uses a lot of various additives in its operations. These are conventional sealants and still exotic materials such as: micaceous carbonate - BARAFLAKE® M, swelling polymer with 400-fold expanding...
particles - DIAMOND SEAL®, spongeous materials such as BaraLock®-666 with various particle sizes.

Notably, the LCM approach may not help. This being the case, an alternative approach to well drilling may be required using emulsion drilling (underbalance drilling), foam drilling, etc.

National Oilwell Varco:
• Running circulating subs that help place the LCM saving an unplanned trip to the operator.
• Monitor ECD to prevent loss of circulation, controlled ROP (if needed).
• Lightening mud weight if it is possible. Review casing program.

Weatherford: Regrettably, there is no panacea for lost circulation, but anyway, an operator company and a drilling contractor would start from the simplest solution. In general, the best and most efficient means of lost circulation control is prevention. The existing methods of prevention and elimination of complications during drilling at various lost circulation rates or in case of complete loss of circulation include the following: lowering of hydrostatic and hydrodynamic pressure in a well (mud cap drilling, drilling with air or foam drilling), lost circulation zone plugging (using special cement mixtures and pastes), or plastering effect (while drilling with casing), using mechanical barriers (single use or drillable packers, or expandable patches).

Targin Drilling:
1) Change the mud type and weight;
2) Add and inject LCM;
3) Change rheology properties;
4) Adjust drilling technique respectively to drilling pump, drilling rate and BHA.

6. What products/services do you supply to overcome lost circulation problems?

Halliburton: Halliburton provides all known types of LCM materials, sealants and sealing technologies. As mentioned above, these are both conventional widely known materials, e.g. sorted crushed marble, and exotic and unique technologies. Amongst them are the most advanced developments in the field of multimodal materials combining all structural types of sealants (fiber, spongeous materials, swelling polymer, elastic particles, micaceous materials). Our experience shows that such materials are easily delivered and stored, they can be quickly added and prepared (which saves a lot of time) and help reduce the number of sealant pills. These materials (BDFTM -657,
National Oilwell Varco: MOCS (multi-opening circulating sub). Current sizes are 8", 6 ½" and 4 ¾". 4 1/8" is to be designed.

NOV Named Finalist for 2013 World Oil Awards
National Oilwell Varco has been named a finalist in three categories for the 12th annual World Oil Awards. The World Oil Awards serves as a yearly opportunity to spotlight important innovations and achievements in the upstream oil and gas industry.

The Multiple Opening Circulation Sub (MOCS Tool) is a finalist for Best Drilling Technology. The Fishing Agitator™ System is a finalist for Best Well Intervention. Lastly, the AQUA-VESTM Mobile Water Treatment System is a finalist for Best Health, Safety, Environment / Sustainable Development Onshore.

Циркуляционный переводник многоразового действия (MOCS) от NOV

The multiple opening circulation sub (MOCS tool) from NOV

2016 NOV, all rights reserved

BARABLEND®-665, HYDRO-PLUG®) have been developed by Halliburton on the basis of accumulated experience as the most efficient combinations of various components.

Halliburton: In the process of drilling an interval or, when an incident has already occurred, the worst thing we can do is to start guessing how to proceed. Before drilling the well, the decision-making process for each specific scenario must be approved by all parties. Ensuring the well is the most diverse (multimodal) materials of different types is also a critical factor. Halliburton uses many different ingredients in its work. This includes traditional barrier materials, as well as: slurry carbonate - BARAFLAKE® M, expanding polymer particles of which increase in size by 400 times - DIAMOND SEAL®, foamed materials, such as fractionated BaraLock®-666.

The Multiple Opening Circulation Sub (MOCS Tool) is a circulation bypass sub that, utilizing a unique cycling mechanism design, allows unlimited cycling without the need for multiple ball drops. The tool is cycled in seconds using a single drop ball and changes in flow rate. Short shift times and unlimited cycles allow the MOCS tool to be used for multiple applications down hole, from placement of Lost Circulation Material (LCM) to bottoms-up circulation. The
MOCS tool reduces downtime during the use of circulating tools in hole and has been proven to increase efficiency while reducing costs.

Weatherford: It is worth to mention that among many engineered solutions to overcome lost circulation issues, drilling with casing and drilling with liner technologies are the most efficient and reliable. Both are well-known to producing companies for many years. Drilling with casing and liner technologies enable to drill and run, set and cement casing in a single trip, accelerating well construction, minimizing costs, and reducing risk exposure; they also allow drilling through potentially hazardous intervals, such as lost-circulation zones, differential pressure areas and unstable formations. They have been employed in many regions and countries as effective methods of cutting drilling costs by reducing drilling time and mitigating drill-string problems encountered during conventional drilling process. The procedures for rotary drilling with casing are relatively simple, require no modification to the conventional drilling rig package and use conventional oilfield tubular goods. When target depth is reached and circulating bottoms-up is performed, cementing can begin immediately. The system is also extremely reliable, if proper engineering calculations are carried out prior to the operations.

Targin Drilling: We propose:
• Water-based isolating substances (of high filtration to be pumped under pressure, diesel oil / bentonite, cross-linked polymer, diesel oil / bentonite / cement, cement slurry).
• Hydrocarbon-based isolating substances (infusorial silica, calcium carbonate M-I-X-II, hard plug for hydrocarbon solutions).
• Injection technique for high-viscosity LCM.
• LCM of different fraction and composition, also for production reservoirs.
• Equipment for local strengthening of walls.

7. Can you describe a recent drilling operation that has used your products to successfully reduce or stop lost circulation? Describe the scenario, procedure and results.

Halliburton: Multiple examples can be provided. Multimodal LCM material was successfully used for operations in Bashkortostan to cure total losses. Halliburton was involved 1 month after the incident happened during which multiple technologies by other service companies were applied including swelling polymers, various neutral LCM products and others. It helped stop many days of NPT and the loss of hundreds of cubic meters of drilling fluid. In West Siberian fields, the company has for the past two years successfully employed preventive technology while drilling wells with...
National Oilwell Varco: Компанией NOV разработаны циркуляционные переводники многоразового действия MOCS. В настоящее время в России они представлены в трех типоразмерах: 8”, 6 ½”, 4 ¾”. В планах – разработка инструмента размером 4 1/8”.

В 2013 г. компания NOV объявлена финалистом конкурса World Oil Awards National Oilwell Varco стала финалистом в трех номинациях 12-той ежегодной премии World Oil. Премия World Oil служит в качестве ежегодной возможности осветить последние инновационные разработки и достижения в области добычи нефти и газа.

Финалистом в номинации «Лучшая технология бурения» объявлен циркуляционный переводник многоразового действия MOCS. Финалистом в номинации «Лучшая технология обработки скважины» объявлена система Fishing Agitator™ System. И, наконец, финалистом в номинации «Лучшие разработки в области промышленной безопасности, охраны труда и окружающей среды / устойчивого развития на береговых объектах» объявлена мобильная система очистки воды AQUA-VESTM.

Циркуляционный переводник многоразового действия MOCS, оборудованный перепускным клапаном, представляет собой уникальный циркуляционный механизм, рассчитанный на выполнение неограниченного количества циклов без необходимости многократного сбрасывания шара. Переводник выполняет цикл за несколько секунд, используя один сбрасываемый шар и изменения расход потока. Благодаря кратковременности перемещения и неограниченности циклов, циркуляционный переводник многоразового действия MOCS можно переключать неограниченное число раз с момента закачки тампонажных смесей до подъема. Циркуляционный переводник многоразового действия MOCS позволяет сократить непроизводительное время, а также издержки, связанные с борьбой с поглощением.

Weatherford: One of the recent jobs performed by Weatherford was application of DwC™ technology, including the Defyer® DPA 4416 drillable casing bit for well drilling in the Russian North and through permafrost reservoirs. There were some challenges to be overcome: to drill sections in three wells of 230-650 m with thief, or lost circulation zones; reduce fluid losses and mitigate wellbore instability while drilling, as well as enhance operational safety and decrease the number of trips. Simultaneous drilling and casing eliminated the need to change the BHA, which reduced the number of trips and limited personnel exposure. Weatherford constructed the intervals in approximately 3.5 days in specific climate conditions.

Drilling-with-Casing was used to isolate lost circulation zones, increase the rate of penetration and minimize wellbore instability. The technology was used in 3 wells, resulting in about 4 mlн. rubles savings per well; consequently, surface casing drilling time was reduced by four days on the average, decreasing the wear of equipment and drill pipes.
ПОГЛОЩЕНИЯ БУРОВОГО РАСТВОРА

Дополнительные сложности, связанные с поглощениями бурового раствора, особенно эффективностью и надежностью отличаются технологии бурения на хвостовике и обсадной колонне. Они известны добывающим компаниям уже много лет. Технология бурения на обсадной колонне/хвостовике позволяет бурить и спускать, устанавливать и цементировать обсадную колонну за одну СПО, ускоряя процесс строительства скважины, снижая затраты и риски для персонала. Обе системы также позволяют бурить через потенциально опасные участки, такие как зоны потери циркуляции, перепад давления и нестабильные пластины. Они успешно применяются в самых различных регионах и позволяют снизить стоимость строительства скважины за счет сокращения времени бурения и устранения осложнений, которые могут возникать при применении прочих способов. Технология роторного бурения на обсадной колонне отличается относительной простотой, поскольку для ее функционирования применяются традиционные трубы и муфты нефтепромыслового сортамента, и никаких изменений в оснащение стандартной буровой установки не требуется, следовательно, нет потребности и в изменений в оснащение стандартной буровой установки и муфты нефтепромыслового сортамента, и никаких функционирования применяются традиционные трубы.

ООО «Таргин Бурение»: Мы предлагаем ряд решений:
- Изолирующие смеси на водной основе (раствор с высоким уровнем фильтрации для закачки под давлением, дизельное топливо/бентонит, сшитый полимер, дизельное топливо/бентонит/цемент, цементный раствор).
- Изолирующие смеси на углеводородной основе (диатомовая земля, карбонат кальция M-I-X-II, твёрдая пробка для углеводородных растворов).
- Технологию закачки высоковязких кольматирующих пачек.
- Разнофракционные и разнородные кольматанты для ликвидации поглощений, в том числе и в продуктивном пласте.
- ОЛКС.

7. Не могли бы Вы описать недавний опыт использования ваших продуктов в процессе бурения для успешного уменьшения или прекращения поглощения бурового раствора? Опишите сценарий, процедуру и результаты.

Halliburton: Можно привести множество примеров. Мультимодальный материал для борьбы с поглощением бутылочно-опытного характера.

It shall be noted, that drilling with casing method is especially suitable for northern countries such as Russia, Canada, and Alaska, were severe loss zones in shallow sections pose a significant challenge. The analysis undertaken after completion of the project showed the efficiency of DwC technology, including lower mud losses while drilling through lost circulation zones and lower bridging agent consumption. This once again confirms the advantages of the plastering effect.

DwL™ technology has also proved its efficiency in Russia. Due to its simple design and efficiency, drilling with liner was decided to be used by one of Weatherford customers. It is worth to mention that DwL technology enabled completion of 6 wells. A length of open hole interval drilled by a 127-mm liner in one well reached 254 m. Three absorption zones were encountered, but a number of complications while drilling was minimized, and an average well construction time was 20 days per well. It should be mentioned that the average well construction time using conventional drilling methods is 35 days. Notably, the technology of drilling with liner was first applied for drilling “shallow” (sub-horizontal) wells, and problems were overcome thanks to better circulation caused by a streamlined liner design and annulus enlargement. Production casing section was fully drilled. Moreover, as experts stated, with drillable Weatherford bit it will be even possible to proceed with drilling operations below liner in case of sticking.

Targin Drilling: The below technique was used by our drilling mud contractor during a well construction in the Spassk field.

Lost circulation occurred in the depth below 1150 meters and the intensity reached 30 m³/h and higher. Further drilling, down to 1418 meters, was accompanied by measures against lost circulation of varying intensity. In the 522 to 769 m interval (Upper Carbonic) the well allegedly bleeds hydrogen sulfide containing water (1.06 g/cm³). Based on the GIS data the following intervals were detected where lost circulation was the highest: 1184-1190m, 1200-1210m, 1218-1220m, 1230-1235m, 1240-1245m, 1250-1255m, 1260-1265m, 1270-1275m, 1280-1285m, 1290-1295m, 1300-1305m, 1310-1315m, 1320-1325m, 1330-1335m, 1340-1345m, 1350-1355m, 1360-1365m, 1370-1375m, 1380-1385m, 1390-1395m, 1400-1405m, 1410-1415m. The total capacity of packing clay / gel cement / LCM / sawdust was 337 m³. The response measures took 41 days.

As a remedial measure it was decided to inject 7 m³ QUICK-STONE.

The injection and drilling-out was successful. The lost circulation intensity was 2-3 m³/h afterwards and it was then possible to proceed drilling and inject additives into the mud.

8. With the market suffering from the low oil price, are “short-cuts” being taken when dealing with lost
был успешно использован при проведении работ в Башкортостане, где имело место полное поглощение. Компания Halliburton была привлечена для ликвидации инцидента через 1 месяц после его возникновения, после того как не увенчались успехом неоднократные попытки применения иных технологий, включая набухающие полимеры, различные нейтральные материалы для борьбы с поглощением и т.д. Это позволило остановить длительный период непроизводительного времени и потерю сотен кубических метров бурового раствора. На месторождениях Западной Сибири уже 2 года успешно применяется противовирусная технология при бурении скважин с АНПД - BARAFLAKE® M, когда данный наполнитель постоянно добавляется в буровой раствор при прохождении сложных интервалов.

National Oilwell Varco: В России в Бузулукском районе циркуляционный переводник многоразового действия MOCS размером 6½" используется для защиты КНБК при устранении поглощения бурового раствора. Циркуляционный переводник проработал 15 циклов общей продолжительностью 70 часов. 9 часов он находился в режиме перепуска. «За одну операцию переводник превзошел по числу выполненных циклов все стандартные инструменты, имеющиеся на рынке. В переводе превзошел по числу выполненных циклов на 5%. Материалы MOCS успешно работают в условиях, где другие инструменты не могут работать.»

Везерфорд: Одной из недавних работ компании Weatherford стало применению метода бурения на обсадной колонне DwC™ с применением бурового башмака Defyer® DPA 4416 при бурении скважин на Российском севере в условиях многолетнемерзлых пород. При бурении интервала кондуктора на трех скважинах в интервале 230 – 650 метров потребовалось справляться с несколькими проблемами: зонами потери циркуляции и поглощениями, а также предотвратить нестабильность ствола, сократив число ЦПО и повысив при этом безопасность ведения работ. Возможность одновременного использования процессов бурения и спуска ОК позволила не прибегать к смене КНБК. В целом, специалистам Weatherford удалось осуществить строительство интервала кондуктора в среднем за 3,5 дня в сложнейших климатических условиях.

Технология бурения обсадной колонной была применена для изоляции зон поглощения, увеличения механической скорости проходки и минимизации нестабильности стенок скважины. При этом на 3 скважинах, где ее использовали, удалось сэкономить около 4 млн рублей за скважину и в результате сократить время строительства интервала кондуктора в среднем на четыре дня, соответственно, сократив износ оборудования и бурового инструмента. Стоит отметить, что метод бурения обсадной
likely remain the same. On the other side, if there is significant progress in drilling HTHP wells, deepwater and other wells which require new LCM technologies, new LCM technologies will likely appear. I don’t think though they will differ from existing technologies drastically. I would expect existing technologies with improved features like higher temperature limits, less time for reaction etc. It is also possible that nanotechnologies will be introduced in the material production industries, e.g. our innovative spongeous material BaraLock®-666 is produced on the same principle as graphene-based materials making them sustainable in reservoir conditions.

National Oilwell Varco: With Western Siberia market shifting towards sidetrack applications, there is 4 1/8” MOCS tool design being the pipeline to step into the new market for NOV. Also, new indexing mechanisms are being developed right at this moment.

Weatherford: It is rather difficult to highlight just one product or tool among advanced developments, because intensive engineering studies are ongoing in engineered chemistry, hydrodynamic pressure management and mechanical isolation of formations. New ideas will keep coming until we find a comprehensive solution.

Targin Drilling: Development of lost circulation preventive measures is our priority. We plan to utilize circulating subs, cross-linking high-adhesive agents, swelling agents and low weight mud (below 1.0 g/cm³, i.e. OBM).

Halliburton: Pogloщение бурового раствора стоит.Operatorу немалых денег. Даже во времена высоких цен на нефть некоторые компании стремятся

гельцемента/НДР/опила составил 337 м³. Затраченное время на ликвидацию осложнения составило 41 день.

Было принято решение прокачать 7 м³ состава «QUICK-STONE» для ликвидации зоны катастрофического поглощения.

Результат после прокачивания и разбуривания состава положительный. Интенсивность поглощения после разбуривания состава составила 2-3 м³/час, что позволило продолжить углубление скважины с вводом наполнителей по активу раствора.

8. В условиях, когда рынок страдает от низких цен на нефть, применяются ли «упрощённые схемы» для решения проблем с поглощением бурового раствора? Если да, то как это сказывается на скважине, в краткосрочной и долгосрочной перспективах?

Halliburton: Поглощение бурового раствора стоит Operatorу немалых денег. Даже во времена высоких цен на нефть некоторые компании стремятся

колонной имеет особое применение в северных районах, в том числе России, Канады и Аляски, где зоны поглощения бурового раствора в приповерхностных интервалах являются серьезной проблемой. Проведенный после окончания работ по проекту анализ показал эффективность применения технологии бурения обсадной колонной, результатом чего стало снижение потерь бурового раствора при прохождении зон поглощения и снижение количества используемых кольматирующих пачек. Этот тезис еще раз подтверждает срабатывание эффекта затирания. Метод бурения на хвостовике DwL™ также успел снискать себе популярность в России. В силу простоты, безопасности и эффективности методики бурения на хвостовике одним из заказчиков компании Weatherford было принято решение о ее апробации. Стоит отметить, что использованная технология бурения с горизонтальным окончанием обеспечила успешное заканчивание шести скважин. В одной из скважин длина открытого ствола, пробуренного хвостовиком диаметром 127 мм, составила 254 м. В ходе бурения были вскрыты три зоны поглощения, при этом число осложнений в процессе бурения снизилось, а средняя продолжительность строительства составила 20 суток на скважину. Стоит отметить тот факт, что при бурении скважин стандартными методами средний срок строительства здесь составляет 35 дней. Важно, что технология бурения на хвостовике была впервые применена для бурения «неглубокой», или субгоризонтальной, скважины, при этом осложнения были устранены за счет улучшения циркуляции, что стало результатом упрощения конструкции хвостовика и увеличения кольцевого зазора. При этом бурение эксплуатационной части коллектора было выполнено в полном объеме. Специалисты отмечают, что при бурении разбуриваемым долотом производства Weatherford возможно продолжение бурения ниже хвостовика в случае прихвата.

ООО «Таргин Бурение»: Нижеуказанная технология была применена нашим подрядчиком по буровым растворам при строительстве скважины.

В процессе строительства скважины на Спасском месторождении, ниже 1150 метров началось поглощение бурового раствора интенсивностью 30 м³/ч и более. Далее при углублении скважины до глубины 1418 метров велись постоянные борьба с поглощениями различной интенсивности. Предположительно, в интервале 522-769 м (интервал Верхнего Карбона) скважина изливает пластовой водой (1,06 г/см³) с содержанием сероводорода. На основе результатов ГИС были определены интервалы с наиболее интенсивным поглощением: 1184-1190 м, 1200-1210 (20) м. Потери бурового раствора составили 543 м³. Суммарный объем глинистой пасты/гельцемента/НДР/опила составил 337 м³. Затраченное время на ликвидацию осложнения составило 41 день.

Было принято решение прокачать 7 м³ состава «QUICK-STONE» для ликвидации зоны катастрофического поглощения.

Результат после прокачивания и разбуривания состава положительный. Интенсивность поглощения после разбуривания состава составила 2-3 м³/час, что позволило продолжить углубление скважины с вводом наполнителей по активу раствора.

8. В условиях, когда рынок страдает от низких цен на нефть, применяются ли «упрощённые схемы» для решения проблем с поглощением бурового раствора? Если да, то как это сказывается на скважине, в краткосрочной и долгосрочной перспективах?

Halliburton: Поглощение бурового раствора стоит Operatorу немалых денег. Даже во времена высоких цен на нефть некоторые компании стремятся
экономить на материалах и технологиях, применяемых для борьбы с поглощением. Технология, используемая для борьбы/предупреждения поглощения бурового раствора, должна быть оптимальной как технически, так и экономически. Подход с применением одного материала для борьбы с поглощением, вероятно, будет применяться на проектах на сушу, в то время как высокотехнологичный подход будет пользоваться спросом на шельфовых и наиболее сложных сухопутных проектах. Не думаю, что имеется прямая связь с ценой на нефть.

National Oilwell Varco: Сейчас многие буровые компании, пытаясь уменьшить расходы, предпочитают экономить на дополнительных инструментах в КНБК. Однако стоимость аренды циркуляционного переводника многоразового действия MOCS ничтожно мала в свете вероятных потерь бурового раствора, а тем более отягощенных последствий после полной потери циркуляции.

«Везерфорд»: В условиях сложных для прохождения и эффективного вскрытия коллекторов, невысоких цен на углеводороды, с одной стороны, и относительно высоких затрат на эффективные современные технологии, с другой, целесообразным в целом представляется поиск компромисса, суть которого – комбинация традиционных и опробованных технологий для конкретного месторождения или пласта и новых технологий, включая современные исследования. Такой подход применим для коллекторов с различной литологией, но особенно актуален для карбонатных пластов с повышенной кавернозностью и трещиноватостью, для которых свойственны и проблемы поглощения бурового раствора.

Правильный выбор оборудования для изоляции интервалов и технологии бурения для обеспечения стабильности стенок скважины, оптимизации расхода раствора с целью повышения эффективности очистки, а также контроля давления в затрубном пространстве при использовании новейших материалов борьбы с поглощениями сокращает время строительства скважины, повышает безопасность операций, и оставляет компании-оператору набор решений для применения в зависимости от фактической ситуации.

ООО «Таргин Бурение»: Главное требование в нынешних условиях – снижение стоимости на ликвидацию поглощения. Но важно учесть главный фактор и не снизить естественную проницаемость. При использовании кислотонерастворимых кольматантов в продуктивке можно снизить коллекторские свойства пласта. Итогом будет быстрый выход из строя ЭЦН и как следствие снижение межремонтного периода скважины.

9. Каково будущее для развития технологий, связанных с поглощением бурового раствора – какие новые продукты/услуги можно ожидать увидеть в ближайшем будущем?

Halliburton: Технология разрабатывается в ответ на текущие или потенциальные проблемы. Иными словами, будущие технологии будут зависеть от таких проблем. Если они будут сходны с теми, что мы видим сейчас, технологии материалов для борьбы с поглощением, вероятно, останутся теми же. С другой стороны, при наличии существенного прогресса в бурении скважин с высокой температурой и давлением, глубоководных и иных скважин, требующих новых технологий борьбы с поглощением, вероятно появление новых материалов. Однако не думаю, что они будут радикально отличаться от существующих технологий. Технологии борьбы с поглощениями будут скорее всего представлять существующие технологии с улучшенными характеристиками, такими как более высокий температурный предел, сокращение времени реакции и т.д. Так же не исключается возможность, что в промышленность будет внедряться нанотехнологии по производству материалов. К примеру, наш новый губчатый материал BaraLock® производится по принципу производства материалов с использованием графенов, что позволяет ему сохранять форму и не сжиматься в пластовых условиях.

National Oilwell Varco: Мы наблюдаем повышенный спрос на оборудование для бурения боковых стволов в Западной Сибири. Компания NOV работает над дизайном переводника MOCS в 4 1/8” типоразмере. Кроме того, в настоящее время ведется работа над усовершенствованием индексного механизма.

«Везерфорд»: Довольно сложно выделить какой-то отдельный продукт в качестве перспективной разработки, поскольку как с точки зрения химического проектирования, либо управления гидродинамическим давлением, так и механической изоляции пропластка, ведутся интенсивные разработки. Ведь пока не найдено универсального решения проблемы, будут появляться все новые и новые идеи.

ООО «Таргин Бурение»: Приоритетна разработка комплексных мер по предотвращению поглощений. Перспективно применение кольматационных переводников, сшивающихся высокоадгезионных составов, набухающих составов, а также буровых растворов с низкими плотностями (менее 1,0 г/см³ – РУО).
Харитонов Андрей Борисович - Kharitonov Andrey Borisovich

Kharitonov Andrey Borisovich graduated from D.I. Mendeleyev University of Chemical Technology of Russia. Doctor of Chemistry since 1998. Visiting scholar for 4 years at Hebrew University of Jerusalem, Israel, Department of Organic Chemistry. Author of more than 30 scientific manuscripts in the field of Biochemistry and Analytical Chemistry. Employed by Halliburton since 2003. Currently working as a Technical Manager for Russia and Caspian Areas, Drilling Fluids Division. SPE Member since 2007. Author of more than 15 manuscripts in the field of Oil and Gas well construction.

Роман Че - Roman Che
National Oilwell Varco

Roman Che is a graduate from the Gubkin’s Russian State University of oil and gas (Construction Engineering degree). Since 2009 he has participated in the Next Generation Program and then moved to the Advanced Drilling Solutions in the capacity of an Engineer. Roman has held positions of the Drilling Solutions Engineering coordinator, and the Account manager – Far East. He is currently the Drilling Technology Product Line Manager supporting Russia and CIS.

Станислав Куликов - Stanislav Kulikov
«Везерфорд» - Weatherford

Stanislav Kulikov, Ph.D., Project Manager for MPD and DwC, author of about 20 articles and a book titled ‘Nondestructive inspection in Drilling’. He has been holding various positions with Weatherford for over 7 years. Stanislav graduated from Moscow State University of Instrument Engineering and Computer Science as a design engineer in 2006. He has worked in oil and gas industry for over 10 years.

Ильшат Ганеев - Ilishat Ganeev
ООО «Таргин Бурение» - Targin Drilling

1994-1999 - обучение в Уфимском государственном нефтяном техническом университете по специальности <Бурение нефтяных и газовых скважин>
1999-2008 - Нефтамское управление буровых работ АНК <Башнефть>, от помощника бурильщика до инженера-технолога технического отдела.
2008-2009 - Заместитель начальника технологического отдела Нефтамского управления буровых работ ООО <Башнефть-Геострой>
2009-2012 - Начальник технологического отдела - главный технолог Нефтамского управления буровых работ ООО <Башнефть-Геострой>
2012-2015 - Главный инженер Нефтамской экспедиции глубокого бурения ООО <Башнефть-Бурение> (c 2014 г. - ООО <Таргин Бурение>)
2015 по наст. вр. - Начальник технологического отдела - главный технолог ООО <Таргин Бурение>
1994-1999 Ufa State Petroleum Technological University, Oil and Gas Well Drilling
1999-2008 Neftekamsk Drilling Directorate of Bashneft, rising from Assistant Driller to Process Engineer in the Engineering Department
2008-2009 Neftekamsk Drilling Directorate of Bashneft-Geostroy, Process Department Deputy Manager
2009-2012 Neftekamsk Drilling Directorate of Bashneft-Geostroy, Process Department Manager, Chief Process Engineer
2012-2015 Neftekamsk Deep Drilling Expedition of Bashneft-Burenie (Targin Drilling since 2014), Chief Engineer
2015- Current Process Department Manager, Chief Process Engineer in Targin Drilling